9222 measured reflections

 $R_{\rm int} = 0.021$

refinement $\Delta \rho_{\text{max}} = 0.20 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

6472 independent reflections

4128 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Methylpyridinium benzylate

Jie Li

Basic Experiment Teaching Center, Henan University, Kaifeng 475001, People's Republic of China Correspondence e-mail: lijiehd@163.com

Received 23 September 2007; accepted 24 September 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.057; wR factor = 0.156; data-to-parameter ratio = 14.4.

The asymmetric unit of the title salt, $C_6H_8N^+ \cdot C_{14}H_{11}O_3^-$, contains two pairs of 2-methylpyridinium cations and benzylate anions, in which the cation links to the anion through an $N-H\cdots O$ hydrogen bond. An intramolecular $O-H\cdots O$ bond occurs in each benzylate anion and constructs an S(6) ring. The anions are linked into centrosymmetric dimers by further $O-H\cdots O$ hydrogen bonds.

Related literature

For related literature, see: Zhang & Chen (2005).

Experimental

Crystal data

$C_6H_8N^+ \cdot C_{14}H_{11}O_3$
$M_r = 321.36$
Triclinic, P1
a = 8.411 (6) Å
b = 12.342 (8) Å
c = 16.291 (11) Å
$\alpha = 91.93 \ (1)^{\circ}$
$\beta = 90.10 \ (1)^{\circ}$

 $\gamma = 95.77 (1)^{\circ}$ $V = 1682 (2) Å^3$ Z = 4Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 298 (2) K $0.45 \times 0.21 \times 0.12 \text{ mm}$ Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2001) $T_{\min} = 0.963, T_{\max} = 0.990$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.156$ S = 0.996472 reflections 451 parameters 4 restraints

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1A \cdots O4$ $N2 - H2A \cdots O1$ $O3 - H3 \cdots O2$ $O3 - H3 \cdots O2^{i}$ $O6 - H6 \cdots O5$ $O6 - H6 \cdots O5^{ii}$	0.864 (8) 0.862 (8) 0.816 (8) 0.816 (8) 0.829 (8) 0.829 (8)	1.757 (8) 1.748 (8) 2.123 (13) 2.158 (9) 2.053 (15) 2.167 (11)	2.6155 (19) 2.6081 (19) 2.5870 (19) 2.909 (2) 2.5748 (19) 2.904 (2)	172.0 (13) 176.6 (14) 116.0 (11) 153.1 (13) 120.4 (14) 148.0 (16)

Symmetry codes: (i) -x + 2, -y + 2, -z + 1; (ii) -x + 1, -y + 2, -z + 2.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2553).

References

Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2001). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Zhang, X. L. & Chen, X. M. (2005). Cryst. Growth Des. 5, 617-622.

Acta Cryst. (2007). E63, o4171 [doi:10.1107/S1600536807046867]

2-Methylpyridinium benzylate

J. Li

Comment

Supramolecular hydrogen-bonded molecular networks are of great current interest (Zhang & Chen, 2005). In this paper, we report the title supramolecular salt, (I), in which the component ions are connected by hydrogen bonds.

Compound (I) contains two pairs of 2-methylpyridinium anions and benzylate anions, in which each 2-methylpyridinium anion interacts with its adjacent benzylate anion through an intermolecular N—H…O hydrogen bond (Fig. 1 and Table 1). In addition, an intramolecular O—H…O hydrogen bond also exists in each benzylate anion and forms an S(6) ring. These O—H…O bonds are bifurcated to nearby O atoms, thus forming inversion dimers.

Experimental

10 ml 2-methylpyridine was added to a 20-ml hot aqueous solution of benzylic acid (1.0 mmol, 0.23 g) and the mixture was stirred for 10 minutes under the temperature of 373 K. Then, the solution was filtered, and the filtrate was kept at room temperature. After 5 d, colorless crystals of (I) were obtained.

Refinement

The N– and O-bound H atoms were located in a difference map and refined with distance restraints N—H = 0.86 (1)Å and O—H = 0.82 (1)Å; their U_{iso} values were freely refined.

The C-bound H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

2-Methylpyridinium benzylate

Crystal data

$C_6H_8N^+ \cdot C_{14}H_{11}O_3^-$	Z = 4
$M_r = 321.36$	$F_{000} = 680$

Triclinic, P1
Hall symbol: -P 1
<i>a</i> = 8.411 (6) Å
<i>b</i> = 12.342 (8) Å
c = 16.291 (11) Å
$\alpha = 91.93 (1)^{\circ}$
$\beta = 90.10 (1)^{\circ}$
$\gamma = 95.77 \ (1)^{\circ}$
$V = 1682 (2) \text{ Å}^3$

Data collection

Bruker SMART APEX CCD diffractometer	6472 independent reflections
Radiation source: fine-focus sealed tube	4128 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 298(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ω scans	$\theta_{\min} = 1.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -10 \rightarrow 9$
$T_{\min} = 0.963, \ T_{\max} = 0.990$	$k = -15 \rightarrow 14$
9222 measured reflections	$l = -20 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difmap and geom
$R[F^2 > 2\sigma(F^2)] = 0.057$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.156$	$w = 1/[\sigma^2(F_o^2) + (0.0823P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.99	$(\Delta/\sigma)_{\text{max}} = 0.005$
6472 reflections	$\Delta \rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$
451 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
4 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

 $D_x = 1.269 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.5-28.2^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 298 (2) KBlock, colourless $0.45 \times 0.21 \times 0.12 \text{ mm}$

Cell parameters from 3910 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculat-

ing *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.55457 (15)	0.82749 (9)	0.75636 (7)	0.0485 (3)
H1A	0.5007 (14)	0.8084 (11)	0.7996 (6)	0.078 (5)*
N2	0.89574 (15)	0.81387 (10)	0.26014 (7)	0.0502 (3)
H2A	0.9425 (15)	0.7909 (11)	0.3023 (6)	0.091 (6)*
01	1.04816 (13)	0.74676 (8)	0.38526 (6)	0.0570 (3)
02	0.98770 (13)	0.90310 (8)	0.43913 (6)	0.0596 (3)
03	1.21228 (13)	0.91798 (7)	0.54884 (6)	0.0521 (3)
Н3	1.1438 (11)	0.9577 (9)	0.5379 (9)	0.082 (6)*
O4	0.38038 (14)	0.75371 (8)	0.87914 (6)	0.0632 (3)
05	0.47755 (13)	0.91188 (8)	0.93295 (6)	0.0621 (3)
O6	0.25502 (13)	0.92267 (7)	1.04037 (6)	0.0494 (3)
Н6	0.3435 (10)	0.9560 (12)	1.0315 (11)	0.113 (7)*
C1	0.57741 (19)	0.75707 (11)	0.69531 (8)	0.0497 (4)
C2	0.6699 (2)	0.79273 (13)	0.63023 (9)	0.0661 (5)
H2	0.6880	0.7448	0.5868	0.079*
C3	0.7350 (2)	0.89825 (14)	0.62927 (10)	0.0703 (5)
H3A	0.7974	0.9224	0.5851	0.084*
C4	0.7087 (2)	0.96873 (14)	0.69324 (10)	0.0691 (5)
H4	0.7526	1.0410	0.6932	0.083*
C5	0.6171 (2)	0.93118 (13)	0.75678 (9)	0.0599 (5)
Н5	0.5979	0.9780	0.8008	0.072*
C6	0.5010 (2)	0.64462 (12)	0.70150 (10)	0.0716 (6)
H6A	0.4730	0.6313	0.7576	0.107*
H6B	0.5740	0.5941	0.6829	0.107*
H6C	0.4063	0.6353	0.6680	0.107*
C7	1.05986 (17)	0.82215 (11)	0.43985 (8)	0.0400 (4)
C8	1.17637 (17)	0.81246 (10)	0.51333 (8)	0.0403 (4)
C9	1.33132 (17)	0.77351 (10)	0.48098 (8)	0.0407 (4)
C10	1.35768 (19)	0.66546 (11)	0.47539 (9)	0.0500 (4)
H10	1.2806	0.6130	0.4943	0.060*
C11	1.4980 (2)	0.63371 (13)	0.44183 (9)	0.0606 (5)
H11	1.5139	0.5602	0.4385	0.073*
C12	1.6127 (2)	0.70919 (14)	0.41370 (9)	0.0655 (5)
H12	1.7066	0.6878	0.3911	0.079*
C13	1.5875 (2)	0.81688 (14)	0.41924 (10)	0.0651 (5)
H13	1.6651	0.8692	0.4005	0.078*
C14	1.4494 (2)	0.84836 (12)	0.45196 (9)	0.0535 (4)
H14	1.4344	0.9220	0.4548	0.064*
C15	1.09641 (17)	0.73823 (10)	0.57771 (8)	0.0416 (4)
C16	0.9994 (2)	0.64452 (12)	0.55794 (9)	0.0556 (5)
H16	0.9780	0.6247	0.5031	0.067*
C17	0.9334 (2)	0.57936 (13)	0.61955 (10)	0.0674 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H17 C18 H18 C19 H19 C20 H20 C21 C22 H22 C23 H23 C24	0.8690 0.9622 (2) 0.9160 1.0583 (2) 1.0784 1.1260 (2) 1.1926 0.85741 (19) 0.7842 (2) 0.7579 0.7499 (2)	0.5157 0.60797 (13) 0.5645 0.69983 (14) 0.7191 0.76461 (12) 0.8270 0.74396 (12) 0.78106 (13) 0.7339	0.6057 0.70014 (10) 0.7410 0.72092 (10) 0.7759 0.66033 (9) 0.6750 0.19715 (9)	0.081* 0.0677 (5) 0.081* 0.0681 (5) 0.082* 0.0553 (5) 0.066* 0.0508 (4)
C18 H18 C19 H19 C20 H20 C21 C22 H22 C23 H23 C24	0.9622 (2) 0.9160 1.0583 (2) 1.0784 1.1260 (2) 1.1926 0.85741 (19) 0.7842 (2) 0.7579 0.7499 (2)	0.60797 (13) 0.5645 0.69983 (14) 0.7191 0.76461 (12) 0.8270 0.74396 (12) 0.78106 (13) 0.7339	0.70014 (10) 0.7410 0.72092 (10) 0.7759 0.66033 (9) 0.6750 0.19715 (9)	0.0677 (5) 0.081* 0.0681 (5) 0.082* 0.0553 (5) 0.066* 0.0508 (4)
H18 C19 H19 C20 H20 C21 C22 H22 C23 H23 C24	0.9160 1.0583 (2) 1.0784 1.1260 (2) 1.1926 0.85741 (19) 0.7842 (2) 0.7579 0.7499 (2)	0.5645 0.69983 (14) 0.7191 0.76461 (12) 0.8270 0.74396 (12) 0.78106 (13) 0.7339	0.7410 0.72092 (10) 0.7759 0.66033 (9) 0.6750 0.19715 (9)	0.081* 0.0681 (5) 0.082* 0.0553 (5) 0.066*
C19 H19 C20 H20 C21 C22 H22 C23 H23 C24	1.0583 (2) 1.0784 1.1260 (2) 1.1926 0.85741 (19) 0.7842 (2) 0.7579 0.7499 (2)	0.69983 (14) 0.7191 0.76461 (12) 0.8270 0.74396 (12) 0.78106 (13) 0.7339	0.72092 (10) 0.7759 0.66033 (9) 0.6750 0.19715 (9)	0.0681 (5) 0.082* 0.0553 (5) 0.066*
H19 C20 H20 C21 C22 H22 C23 H23 C24	1.0784 1.1260 (2) 1.1926 0.85741 (19) 0.7842 (2) 0.7579 0.7499 (2)	0.7191 0.76461 (12) 0.8270 0.74396 (12) 0.78106 (13) 0.7339	0.7759 0.66033 (9) 0.6750 0.19715 (9)	0.082* 0.0553 (5) 0.066*
C20 H20 C21 C22 H22 C23 H23	1.1260 (2) 1.1926 0.85741 (19) 0.7842 (2) 0.7579 0.7499 (2)	0.76461 (12) 0.8270 0.74396 (12) 0.78106 (13) 0.7339	0.66033 (9) 0.6750 0.19715 (9)	0.0553 (5) 0.066*
H20 C21 C22 H22 C23 H23	1.1926 0.85741 (19) 0.7842 (2) 0.7579 0.7499 (2)	0.8270 0.74396 (12) 0.78106 (13) 0.7339	0.6750 0.19715 (9)	0.066*
C21 C22 H22 C23 H23	0.85741 (19) 0.7842 (2) 0.7579 0.7499 (2)	0.74396 (12) 0.78106 (13) 0.7339	0.19715 (9)	0.0509 (4)
C22 H22 C23 H23	0.7842 (2) 0.7579 0.7499 (2)	0.78106 (13)		0.0308 (4)
H22 C23 H23	0.7579 0.7499 (2)	0 7330	0.12961(9)	0.0632 (5)
C23 H23	0.7499 (2)	0.7555	0.0849	0.076*
H23		0.88649 (14)	0.12772 (10)	0.0720 (6)
C24	0.6987	0.9110	0.0822	0.086*
C24	0.7913 (2)	0.95657 (14)	0.19350 (10)	0.0689 (5)
H24	0.7699	1.0290	0.1930	0.083*
C25	0.8642 (2)	0.91750 (12)	0.25919 (9)	0.0584 (5)
H25	0.8925	0.9638	0.3042	0.070*
C26	0.8965 (2)	0.63068 (13)	0.20524 (11)	0.0757 (6)
H26A	0.9899	0.6196	0.1735	0.114*
H26B	0.8083	0.5811	0.1855	0.114*
H26C	0.9166	0.6177	0.2619	0.114*
C27	0 38621 (17)	0.82880 (11)	0.93368 (8)	0.0417 (4)
C28	0.26647(17)	0.81715 (10)	1 00538 (8)	0.0396(4)
C29	0.10108(17)	0 77338 (10)	0.97282 (8)	0.0385(4)
C30	0.05481 (19)	0.66345 (11)	0.96260(9)	0.0200(1) 0.0498(4)
H30	0.1252	0.6136	0.9768	0.060*
C31	-0.0947(2)	0.62605 (12)	0.93151 (9)	0.050
H31	-0.1241	0 5515	0.9256	0.069*
C32	-0.1989(2)	0.69766 (13)	0.90959 (9)	0.0600 (5)
H32	-0 2998	0.6724	0.8893	0.072*
C33	-0.1539(2)	0.80724 (13)	0.91777 (9)	0.072
Н33	-0.2238	0.8567	0.9022	0.071*
C34	-0.00477(19)	0.8367 0.84452(12)	0.94907 (8)	0.0496(4)
H34	0.0246	0.9191	0.9542	0.060*
C35	0.32473 (17)	0 74434 (11)	1.07113 (8)	0.000
C36	0.32173(17) 0.2938(2)	0.76866 (13)	1 15287 (9)	0.0605(5)
H36	0.2389	0.8285	1 1662	0.073*
C37	0.3424(3)	0.70632 (14)	1 21463 (10)	0.075 (6)
H37	0.3202	0 7241	1 2691	0.093*
C38	0.3232 0.4231(3)	0.61854 (14)	1 19611 (11)	0.0818 (6)
H38	0.4566	0.5765	1 2379	0.0010(0)
C39	0.4550 (2)	0.59202 (13)	1 11579 (11)	0.0749 (6)
H39	0.5091	0.5315	1 1031	0.0747(0)
C40	0.3091 0.4066 (2)	0.65565 (12)	1 05309 (10)	0.0580 (5)
H40	0.4298	0.6380	0.9988	0.0500 (5)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}

N1	0.0511 (8)	0.0545 (7)	0.0395 (6)	0.0025 (6)	0.0054 (6)	0.0026 (5)
N2	0.0504 (8)	0.0606 (7)	0.0397 (6)	0.0054 (6)	-0.0038 (6)	0.0044 (6)
01	0.0706 (7)	0.0528 (6)	0.0489 (6)	0.0175 (5)	-0.0211 (5)	-0.0124 (5)
O2	0.0695 (7)	0.0553 (6)	0.0569 (6)	0.0238 (5)	-0.0166 (5)	-0.0080 (5)
O3	0.0620 (7)	0.0362 (5)	0.0573 (6)	0.0051 (5)	-0.0152 (5)	-0.0084 (4)
O4	0.0648 (7)	0.0619 (6)	0.0568 (6)	-0.0168 (5)	0.0180 (5)	-0.0168 (5)
05	0.0608 (7)	0.0591 (6)	0.0601 (6)	-0.0213 (5)	0.0128 (5)	-0.0099 (5)
O6	0.0534 (6)	0.0391 (5)	0.0539 (6)	-0.0013 (5)	0.0063 (5)	-0.0090 (4)
C1	0.0552 (9)	0.0529 (8)	0.0428 (8)	0.0141 (7)	-0.0048 (7)	0.0021 (7)
C2	0.0813 (12)	0.0758 (11)	0.0440 (9)	0.0200 (9)	0.0126 (8)	0.0052 (8)
C3	0.0750 (12)	0.0837 (11)	0.0527 (9)	0.0042 (10)	0.0154 (9)	0.0216 (8)
C4	0.0778 (13)	0.0662 (10)	0.0604 (10)	-0.0102 (9)	0.0049 (9)	0.0125 (8)
C5	0.0700 (11)	0.0560 (9)	0.0512 (9)	-0.0049 (8)	0.0038 (8)	-0.0006 (7)
C6	0.0946 (14)	0.0561 (10)	0.0630 (10)	0.0032 (10)	0.0064 (10)	-0.0004 (8)
C7	0.0410 (8)	0.0408 (7)	0.0381 (7)	0.0031 (6)	-0.0007 (6)	0.0011 (6)
C8	0.0467 (8)	0.0334 (7)	0.0394 (7)	0.0002 (6)	-0.0065 (6)	-0.0062 (6)
С9	0.0412 (8)	0.0430 (7)	0.0365 (7)	-0.0009 (6)	-0.0084 (6)	-0.0011 (6)
C10	0.0515 (9)	0.0446 (8)	0.0523 (9)	0.0001 (7)	0.0020 (7)	-0.0045 (7)
C11	0.0624 (11)	0.0581 (9)	0.0625 (10)	0.0151 (8)	0.0036 (8)	-0.0076 (8)
C12	0.0497 (10)	0.0891 (12)	0.0570 (10)	0.0067 (9)	0.0065 (8)	-0.0052 (9)
C13	0.0515 (10)	0.0780 (11)	0.0626 (10)	-0.0102 (9)	0.0055 (8)	0.0072 (9)
C14	0.0540 (10)	0.0502 (8)	0.0547 (9)	-0.0032 (8)	-0.0033 (8)	0.0048 (7)
C15	0.0412 (8)	0.0429 (7)	0.0412 (7)	0.0080 (6)	-0.0041 (6)	-0.0027 (6)
C16	0.0639 (11)	0.0548 (9)	0.0451 (8)	-0.0065 (8)	0.0040 (8)	-0.0065 (7)
C17	0.0726 (12)	0.0584 (10)	0.0685 (11)	-0.0081 (9)	0.0087 (9)	0.0047 (8)
C18	0.0841 (13)	0.0673 (10)	0.0526 (9)	0.0080 (10)	0.0131 (9)	0.0153 (8)
C19	0.0848 (13)	0.0802 (11)	0.0397 (8)	0.0088 (10)	0.0012 (8)	0.0052 (8)
C20	0.0634 (11)	0.0584 (9)	0.0430 (8)	0.0027 (8)	-0.0064 (7)	-0.0034 (7)
C21	0.0503 (9)	0.0575 (9)	0.0439 (8)	0.0011 (7)	-0.0013 (7)	0.0039 (7)
C22	0.0740 (12)	0.0750 (11)	0.0390 (8)	-0.0006 (9)	-0.0113 (8)	0.0046 (8)
C23	0.0811 (13)	0.0871 (12)	0.0499 (9)	0.0129 (10)	-0.0096 (9)	0.0196 (9)
C24	0.0871 (13)	0.0672 (10)	0.0552 (10)	0.0165 (10)	-0.0029 (9)	0.0143 (8)
C25	0.0689 (11)	0.0569 (9)	0.0499 (9)	0.0084 (8)	-0.0045 (8)	0.0014 (7)
C26	0.0916 (14)	0.0651 (11)	0.0710 (11)	0.0138 (10)	-0.0158 (10)	-0.0054 (9)
C27	0.0405 (8)	0.0405 (7)	0.0427 (8)	-0.0025 (6)	-0.0033 (6)	0.0003 (6)
C28	0.0414 (8)	0.0367 (7)	0.0399 (7)	0.0007 (6)	0.0002 (6)	-0.0030 (6)
C29	0.0399 (8)	0.0402 (7)	0.0348 (7)	0.0006 (6)	0.0018 (6)	0.0025 (6)
C30	0.0474 (9)	0.0452 (8)	0.0565 (9)	0.0009 (7)	-0.0078 (7)	0.0082 (7)
C31	0.0567 (10)	0.0550 (9)	0.0575 (9)	-0.0141 (8)	-0.0099 (8)	0.0053 (7)
C32	0.0454 (10)	0.0782 (11)	0.0539 (9)	-0.0056 (9)	-0.0076 (8)	0.0013 (8)
C33	0.0500 (10)	0.0737 (10)	0.0552 (9)	0.0166 (8)	-0.0096 (8)	0.0002 (8)
C34	0.0545 (10)	0.0473 (8)	0.0478 (8)	0.0083 (7)	-0.0014 (7)	0.0015 (7)
C35	0.0414 (8)	0.0443 (8)	0.0419 (8)	-0.0060 (7)	-0.0055 (6)	0.0013 (6)
C36	0.0647 (11)	0.0680 (10)	0.0482 (9)	0.0017 (9)	-0.0006 (8)	0.0062 (8)
C37	0.1015 (16)	0.0827 (12)	0.0470 (9)	-0.0014 (11)	-0.0054 (10)	0.0135 (9)
C38	0.0991 (15)	0.0725 (11)	0.0719 (11)	-0.0086 (11)	-0.0303 (11)	0.0287 (9)
C39	0.0767 (13)	0.0532 (10)	0.0953 (13)	0.0076 (9)	-0.0244 (11)	0.0110 (9)
C40	0.0602 (10)	0.0539 (9)	0.0598 (9)	0.0059 (8)	-0.0107 (8)	0.0012 (8)

Geometric parameters (Å, °)

N1—C1	1.3259 (18)	C17—C18	1.363 (2)
N1—C5	1.334 (2)	C17—H17	0.9300
N1—H1A	0.864 (8)	C18—C19	1.357 (2)
N2—C25	1.333 (2)	C18—H18	0.9300
N2—C21	1.3361 (19)	C19—C20	1.379 (2)
N2—H2A	0.862 (8)	С19—Н19	0.9300
O1—C7	1.2617 (16)	С20—Н20	0.9300
O2—C7	1.2204 (17)	C21—C22	1.374 (2)
O3—C8	1.4113 (17)	C21—C26	1.478 (2)
O3—H3	0.816 (8)	C22—C23	1.362 (2)
O4—C27	1.2594 (17)	C22—H22	0.9300
O5—C27	1.2183 (17)	C23—C24	1.376 (2)
O6—C28	1.4163 (17)	С23—Н23	0.9300
O6—H6	0.829 (8)	C24—C25	1.359 (2)
C1—C2	1.374 (2)	C24—H24	0.9300
C1—C6	1.476 (2)	С25—Н25	0.9300
C2—C3	1.362 (2)	C26—H26A	0.9600
С2—Н2	0.9300	С26—Н26В	0.9600
C3—C4	1.368 (2)	С26—Н26С	0.9600
С3—НЗА	0.9300	C27—C28	1.545 (2)
C4—C5	1.358 (2)	C28—C29	1.528 (2)
C4—H4	0.9300	C28—C35	1.532 (2)
С5—Н5	0.9300	C29—C30	1.378 (2)
С6—Н6А	0.9600	C29—C34	1.376 (2)
С6—Н6В	0.9600	C30—C31	1.384 (2)
С6—Н6С	0.9600	С30—Н30	0.9300
С7—С8	1.561 (2)	C31—C32	1.362 (2)
C8—C9	1.523 (2)	С31—Н31	0.9300
C8—C15	1.5279 (19)	C32—C33	1.369 (2)
C9—C14	1.382 (2)	С32—Н32	0.9300
C9—C10	1.374 (2)	C33—C34	1.382 (2)
C10-C11	1.388 (2)	С33—Н33	0.9300
C10—H10	0.9300	С34—Н34	0.9300
C11—C12	1.363 (2)	C35—C40	1.374 (2)
C11—H11	0.9300	C35—C36	1.386 (2)
C12—C13	1.367 (2)	C36—C37	1.373 (2)
C12—H12	0.9300	С36—Н36	0.9300
C13—C14	1.365 (2)	C37—C38	1.361 (3)
С13—Н13	0.9300	С37—Н37	0.9300
C14—H14	0.9300	C38—C39	1.372 (3)
C15—C16	1.375 (2)	С38—Н38	0.9300
C15—C20	1.390 (2)	C39—C40	1.394 (2)
C16—C17	1.389 (2)	С39—Н39	0.9300
C16—H16	0.9300	C40—H40	0.9300
C1—N1—C5	122.62 (13)	С20—С19—Н19	120.1
C1—N1—H1A	121.9 (9)	C15—C20—C19	121.15 (15)

C5—N1—H1A	115.4 (9)	C15—C20—H20	119.4
C25—N2—C21	121.89 (13)	C19—C20—H20	119.4
C25—N2—H2A	119.5 (9)	N2—C21—C22	118.51 (15)
C21—N2—H2A	118.6 (9)	N2-C21-C26	117.26 (14)
С8—О3—Н3	111.4 (9)	C22—C21—C26	124.23 (14)
С28—О6—Н6	104.1 (11)	C23—C22—C21	120.48 (15)
N1—C1—C2	118.39 (14)	C23—C22—H22	119.8
N1—C1—C6	117.65 (14)	С21—С22—Н22	119.8
C2—C1—C6	123.96 (14)	C22—C23—C24	119.61 (16)
C3—C2—C1	120.08 (15)	С22—С23—Н23	120.2
С3—С2—Н2	120.0	С24—С23—Н23	120.2
C1—C2—H2	120.0	C25—C24—C23	118.48 (16)
C2—C3—C4	119.95 (16)	C25—C24—H24	120.8
С2—С3—НЗА	120.0	C23—C24—H24	120.8
С4—С3—НЗА	120.0	N2-C25-C24	121.03 (15)
C5—C4—C3	118.69 (16)	N2—C25—H25	119.5
С5—С4—Н4	120.7	С24—С25—Н25	119.5
C3—C4—H4	120.7	C21—C26—H26A	109.5
N1—C5—C4	120.28 (15)	C21—C26—H26B	109.5
N1—C5—H5	119.9	H26A—C26—H26B	109.5
С4—С5—Н5	119.9	C21—C26—H26C	109.5
С1—С6—Н6А	109.5	H26A—C26—H26C	109.5
C1—C6—H6B	109.5	H26B—C26—H26C	109.5
H6A—C6—H6B	109.5	O5—C27—O4	124.52 (14)
С1—С6—Н6С	109.5	O5—C27—C28	117.26 (12)
H6A—C6—H6C	109.5	O4—C27—C28	118.20 (12)
H6B—C6—H6C	109.5	O6—C28—C29	107.76 (11)
O2—C7—O1	124.76 (13)	O6—C28—C27	107.54 (10)
O2—C7—C8	117.27 (11)	C29—C28—C27	109.94 (11)
O1—C7—C8	117.96 (12)	O6—C28—C35	109.09 (11)
O3—C8—C9	107.94 (11)	C29—C28—C35	111.47 (11)
O3—C8—C15	109.00 (11)	C27—C28—C35	110.91 (12)
C9—C8—C15	112.85 (11)	C30—C29—C34	117.69 (14)
O3—C8—C7	107.33 (10)	C30—C29—C28	122.26 (13)
C9—C8—C7	109.21 (11)	C34—C29—C28	119.99 (13)
C15—C8—C7	110.34 (12)	C29—C30—C31	121.06 (14)
C14—C9—C10	117.42 (14)	С29—С30—Н30	119.5
C14—C9—C8	119.53 (13)	С31—С30—Н30	119.5
C10—C9—C8	122.98 (12)	C32—C31—C30	120.43 (15)
C11—C10—C9	120.79 (14)	C32—C31—H31	119.8
C11—C10—H10	119.6	С30—С31—Н31	119.8
C9—C10—H10	119.6	C33—C32—C31	119.34 (16)
C12—C11—C10	120.67 (16)	С33—С32—Н32	120.3
C12—C11—H11	119.7	С31—С32—Н32	120.3
C10-C11-H11	119.7	C32—C33—C34	120.18 (15)
C11—C12—C13	118.87 (17)	С32—С33—Н33	119.9
C11—C12—H12	120.6	С34—С33—Н33	119.9
C13—C12—H12	120.6	C33—C34—C29	121.27 (15)
C12—C13—C14	120.61 (16)	С33—С34—Н34	119.4

С12—С13—Н13	119.7	С29—С34—Н34	119.4
C14—C13—H13	119.7	C40—C35—C36	118.14 (14)
C13—C14—C9	121.65 (15)	C40—C35—C28	123.16 (13)
C13-C14-H14	119.2	C36—C35—C28	118.70 (13)
C9—C14—H14	119.2	C37—C36—C35	121.48 (16)
C16—C15—C20	118.07 (13)	С37—С36—Н36	119.3
C16—C15—C8	123.16 (12)	С35—С36—Н36	119.3
C20—C15—C8	118.76 (13)	C38—C37—C36	119.93 (17)
C15—C16—C17	120.20 (14)	С38—С37—Н37	120.0
C15-C16-H16	119.9	С36—С37—Н37	120.0
С17—С16—Н16	119.9	C37—C38—C39	120.03 (17)
C18—C17—C16	120.57 (16)	С37—С38—Н38	120.0
С18—С17—Н17	119.7	С39—С38—Н38	120.0
С16—С17—Н17	119.7	C38—C39—C40	120.08 (17)
C17—C18—C19	120.13 (15)	С38—С39—Н39	120.0
C17—C18—H18	119.9	С40—С39—Н39	120.0
C19—C18—H18	119.9	C35—C40—C39	120.34 (16)
C18—C19—C20	119.87 (15)	С35—С40—Н40	119.8
С18—С19—Н19	120.1	C39—C40—H40	119.8

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A···O4	0.864 (8)	1.757 (8)	2.6155 (19)	172.0 (13)
N2—H2A···O1	0.862 (8)	1.748 (8)	2.6081 (19)	176.6 (14)
O3—H3···O2	0.816 (8)	2.123 (13)	2.5870 (19)	116.0 (11)
O3—H3…O2 ⁱ	0.816 (8)	2.158 (9)	2.909 (2)	153.1 (13)
O6—H6…O5	0.829 (8)	2.053 (15)	2.5748 (19)	120.4 (14)
O6—H6···O5 ⁱⁱ	0.829 (8)	2.167 (11)	2.904 (2)	148.0 (16)

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*+1; (ii) -*x*+1, -*y*+2, -*z*+2.

Fig. 1